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A randomly driven linear filter that synthesizes Lorenz-like, reverse-time chaos is shown also to produce
Rössler-like folded band wave forms when driven using a different encoding of the random source. The
relationship between the topological entropy of the random source, dissipation in the linear filter, and the
positive Lyapunov exponent for the reverse-time wave form is exposed. The two drive encodings are viewed
as grammar restrictions on a more general encoding that produces a chaotic superset encompassing both the
Lorenz butterfly and Rössler folded band paradigms of nonlinear dynamics.
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Recently, it was shown that chaotic wave forms nearly
identical to those of the famous Lorenz system can be syn-
thesized via linear superposition of equally spaced but ran-
domly polarized pulses �1–3�. Viewed in reverse time, this
process admits a simple physical realization as a second-
order linear filter driven by square waves of random sign �4�.
Since this completely novel source of chaos lies outside the
normal scope of nonlinear dynamics, it is important to con-
sider what other topologically distinct chaotic dynamics can
be synthesized. In this Rapid Communication we show that
the same second-order linear filter that generates Lorenz-like
butterfly dynamics in reverse time also produces Rössler-like
folded band wave forms when driven by a different random
signal. Moreover, the drive signals that yield these wave
forms can be defined by grammar restrictions on a more
general class of drive signals that produces a chaotic super-
set. Through these examples we elucidate a relationship be-
tween the determinism in the output wave form, the topo-
logical entropy of the drive signal, the dissipation in the
linear filter, and the positive Lyapunov exponent for the
reverse-time chaotic wave form.

To begin, we consider the second-order linear filter

ẍ + 2�ẋ + ��2 + �2�x = ��2 + �2�s�t� �1�

where �=2�, ��0 sets the dissipation, s�t� is a random
forcing, and x�t� is the filter output. In Ref. �4�, the dissipa-
tion is �=ln 2 and the forcing is a random binary sequence
�sn�, where each bit is encoded by the polarity of a unit-
length square pulse as shown in Fig. 1�a�. In Fig. 2�a� we
show a projection of the filter output using time-delay em-
bedding. This wave form contains a Bernoulli shift dynamic
and the “attractor” is topologically similar to the famous Lo-
renz butterfly attractor �5�.

We now consider the filter �1� driven by a random binary
sequence using the encoding shown in Fig. 1�b�. As before, a
bit sn=0 encodes to low level for unit duration. However,
now a bit sn=1 encodes as high level for one-half time unit,
followed by low level for a full unit. A projection of the
resulting filter output for �=ln 2 using this new encoding is
shown in Fig. 2�b�. In the following, we show that this wave
form, when viewed in reverse time, is chaotic and topologi-
cally similar to Rössler’s folded band attractor �6�. We also
consider the effects of changing the filter parameter � and

the identification of a critical, matched dissipation.
To begin, we examine the action of the filter for each

possible encoded bit. Without loss of generality, we use
s�t�=1 for the high level and s�t�=0 for the low level. Thus,
for sn=0 we have s�t�=0, and the general solution to Eq. �1�
is

x�t� = Ae−�t sin��t + �� �2�

where A and � are constants of integration. For a low-level
signal of unit duration, this solution admits

x�t + 1� = e−�x�t� . �3�

For sn=1, we first take s�t�=1, for which the general solution
is

x�t� = 1 + Be−�t sin��t + �� �4�

where B and � are constants of integration. For a high-level
signal of one-half unit duration, the solution yields

x�t + 1/2� = 1 + e−�/2�1 − x�t�� . �5�

The remainder of the encoding for sn=1 again uses s�t�=0
for unit duration. Thus, Eqs. �3� and �5� combine to give

x�t + 3/2� = e−� + e−3�/2�1 − x�t�� . �6�

Defining the nth Poincaré return to coincide with the end of
the encoded symbol sn, we use Eqs. �3� and �6� to find that
successive returns are related by

xn = �e−�xn−1, sn = 0,

e−� + e−3�/2�1 − xn−1� , sn = 1,
� �7�

where xn is the value of the filter output at the nth return. It
is straightforward to show that the iterated map �7� is closed
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FIG. 1. Basis pulses for encoding a random sequence sn and
driving a linear filter to synthesize reverse-time chaos similar to �a�
the Lorenz butterfly and �b� Rössler’s simply folded band.
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on the interval �0,e−3�/2+e−�� for any sequence �sn� and
��0.

We first consider the case of strong dissipation ���̃,

where �̃ is the unique real solution of

e−3�̃/2 + e−�̃ = 1. �8�

Analysis yields �̃	0.81 ln 2, so this case includes the results
shown in Fig. 2�b�. For 0�xn−1�1, it is straightforward to
show that 0�xn�e−� for sn=0 and e−��xn�1 for sn=1.
Thus, sn is a function of xn only, and we can invert the map
�7� to get

xn−1 = �e�xn, xn � e−�,

1 + e�/2 − e3�/2xn, xn � e−�.
� �9�

This reverse-time map is a piecewise-linear, skew-tent map
as shown in Fig. 3�a�, and the filter output exhibits dynamics
consistent with this map. Since the slope of each linear seg-
ment in Eq. �9� is greater than 1, the reverse-time wave form
is chaotic and characterized by a positive Lyapunov expo-
nent ��=��. Significantly, the unimodal map function im-
plies that the reverse-time dynamics are characterized by a
simply folded band similar to Rössler’s attractor �6�. How-
ever, the map �9� has an escape region for e−3�/2+e−��xn
�1, from which subsequent backward iterates grow without
bound. As such, the backward map �9� is unstable and char-
acterized by a chaotic transient �7�. A property of the chaotic
transient is that there exists a Cantor set of initial conditions
from which backward iterates do not enter the escape region
and remain bounded: one of these atypical reverse-time tra-
jectories describes any particular wave form observed from
the linear filter. Consequently, the output filter wave form,
when viewed in reverse time, is chaotic and evolves in this
Cantor set.

For the case of weak dissipation ���̃, we have that
e−�+e−3�/2�1 and iterates xn of the map �7� do not partition

according to the drive symbol sn. Thus the inverse of �7�
must maintain xn and sn separately as

xn−1 = �e�xn, sn = 0,

1 + e�/2 − e3�/2xn, sn = 1.
� �10�

This map is shown in Fig. 3�c�. Although there is no escape
region, xn−1 is now a multi-valued function of xn, explicitly
depending on sn. In terms of the reverse-time dynamics, de-
terminism is lost since the random sequence is required in
addition to an initial condition to describe a reverse-time
wave form. We make the conjecture that determinism can be
regained by enforcing a grammar restriction on the random
source, to which we return below.

For the critical dissipation �= �̃, we get a combination of
the prior cases. First, we have that xn determines sn via the
partition at e−� and the map �7� can be inverted per Eq. �9�.
This explicit dependence of xn−1 on just xn implies determin-
ism in the reverse-time wave form. Second, we find that
iterates of the map �7� are closed on the interval 0	xn	1
and there is no escape region for the backward map. Thus,
the reverse-time map is stable and bounded. The map for this
case is shown in Fig. 3�b�. This skew-tent map exhibits cha-

otic dynamics and a positive Lyapunov exponent ��= �̃�.
Since this map is a unimodal one-dimensional map, kneading
theory can be used to show that the map represents a full
shift and exhibits an unrestricted symbolic grammar �8�. A

sample wave form produced by the filter for �= �̃ is shown
in Fig. 4. Compared to Fig. 2�b�, the embedding shown in
Fig. 4�b� does not show any gaps and appears fully con-
nected, confirming that trajectories are not restricted to a
Cantor set. This chaotic set is topologically similar to
Rössler’s simply folded band attractor �6�. However, the
structure in Fig. 4�b� differs in that it is two dimensional with
no transverse thickness; thus, the reverse-time wave form is
not invertible nor described by a flow. In contrast, the attrac-
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FIG. 2. Projection by time-delay embedding
�
t=1/3� of linear filter output wave form with
�=ln 2 using �a� the Lorenz-like butterfly encod-
ing and �b� the Rössler-like folded band
encoding.
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FIG. 3. Reverse-time map for
the filter output for �a� strong dis-

sipation ���̃, �b� critical dissipa-

tion �= �̃, and �c� weak dissipa-

tion ���̃.
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tor in Rössler’s system is characterized by a fractal trans-
verse structure describing an invertible flow.

In this analysis, the critical dissipation �̃ was determined
by the algebraic condition �8�, which set the closed interval
for the map �7� to cover the unit interval. A different ap-
proach is to match the filter’s dissipation—which is the posi-
tive Lyapunov exponent for the reverse-time wave form—to
the maximum possible entropy for the encoded random
source. Assuming p is the probability of the individual sym-
bol sn=1, the entropy of s�t� is

h�p� = −
p ln p + �1 − p�ln�1 − p�

1 + p/2
�11�

where the numerator is the entropy rate for the random se-
quence sn and the denominator is the expected time per sym-
bol. We define a topological source entropy H as the maxi-
mum of h�p� over 0	 p	1. Analysis yields H=h�p̃�, where
p̃ is the unique real root of p̃3−2p̃2+3p̃−1=0. This approach
yields p̃	0.43 and H	0.81 ln 2, which is consistent with

the value for �̃ found previously via Eq. �8�.
We now return to the case of weak dissipation ���̃, for

which the reverse-time map does not display determinism. In
this case, the reduced dissipation of the linear filter is insuf-
ficient to accommodate the topological entropy of the ran-
dom source. We conjecture that determinism can be regained
by decreasing the topological source entropy to match the
reduced dissipation. A reduced topological entropy implies

that certain sequences of random bits are not allowed, which
is equivalent to a grammar restriction applied to the bit se-
quences produced by the random source �9�.

We explore this conjecture and verify it for a particular
case using a simple grammar restriction. We consider the
encoding shown in Fig. 1�b� and a random binary source that
is restricted from generating consecutive 0 bits. That is,
when the random source outputs a 1 bit, it can follow it with
either a 1 or a 0, but whenever the source outputs a 0 bit, it
must follow it with a 1. To analyze this source, we need only
consider the two random “supersymbols” 1 and 01. Using q
and 1−q for the probability of the supersymbols 1 and 01,
respectively, the topological source entropy is

Hr = max
0	q	1

�−
q ln q + �1 − q�ln�1 − q�

5/2 − q
� , �12�

where the denominator is now the expected time per super-
symbol. Calculations provide Hr	0.51 ln 2.

In Fig. 5�a�, we show the filter output for �=Hr and an
unconstrained grammar of 0 and 1. A lack of determinism is
apparent in the reverse-time return map shown in the inset,

which is consistent with analysis for ���̃. In Fig. 5�b�, we
show comparable results for the same filter driven by a ran-
dom sequence of the supersymbols 1 and 01. We see that
applying this grammar restriction has restored determinism
to the reverse-time map.
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FIG. 4. Sample output from linear filter with

matched dissipation �= �̃: �a� output filter wave
form for the input drive signal shown in gray and
�b� projection using time-delay embedding
�
t=1/3�.
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FIG. 5. Time-delay embedding �
t=1/3� of the filter output for the folded band encoding with weak dissipation ��=0.511 ln 2� for �a�
an unconstrained random drive and �b� a constrained random drive with topological source entropy matched to the filter dissipation. The
insets show the corresponding reverse-time return maps.
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The chaotic sets shown in Fig. 2 were generated using the
two different encodings shown in Fig. 1. These basis pulses
can themselves be viewed as a grammar restriction applied to
the more general encoding shown in Fig. 6�a�. In this encod-
ing, the two symbols are simply high and low pulses with
one-half time unit duration. Using this basis, the butterfly
encoding in Fig. 1�a� can be constructed using the supersym-
bols 00 and 11, while the folded band encoding in Fig. 1�b�
is obtained with 00 and 100.

For an unconstrained grammar of the encoding shown in
Fig. 6�a�, the source entropy is two bits per time unit; thus,
we use �=2 ln 2 to view the fully developed chaotic set for
this encoding. The resulting “attractor” obtained by time-
delay embedding is shown in Fig. 6�b�, and the inset shows
the return map for the filter output sampled at the end of each
applied pulse. The reverse-time map shows determinism and
a positive Lyapunov exponent, indicating the reverse-time

wave form is chaotic. The geometric structure shown in Fig.
6�b� contains within it both butterfly and folded band dynam-
ics, as well as any other chaotic sets due to different gram-
mar restrictions of the base encoding shown in Fig. 6�a�.

In conclusion, we have shown that the linear synthesis of
chaotic wave forms is not restricted to the singular case of a
Lorenz-like butterfly topology. We have shown that the same
linear filter that generates reverse-time, Lorenz-like chaotic
wave forms can yield a folded band topology when excited
using a different encoding of the random source. We exposed
the interplay of filter dissipation, reverse-time Lyapunov ex-
ponents, determinism, and the topological entropy of the
drive. We also used the filter to construct a topological struc-
ture that contains both the butterfly and folded band topolo-
gies. This chaotic set suggests that an attractor might be re-
alized that encompasses both of these fundamental
paradigms of nonlinear dynamics.
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FIG. 6. �a� Encoding of random source used to generate a chaotic set containing both butterfly and folded band dynamics. �b� Sample
filter output projected using time-delay embedding �
t=1/3�, with inset showing the wave form return map.
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